68 resultados para drug-delivery system

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated a novel drug delivery system (DDS), consisting of polycaprolactone (PCL) or polycaprolactone 20% tricalcium phosphate (PCL-TCP) biodegradable scaffolds, fibrin Tisseel sealant and recombinant bone morphogenetic protein-2 (rhBMP-2) for bone regeneration. PCL and PCL-TCP-fibrin composites displayed a loading efficiency of 70% and 43%, respectively. Fluorescence and scanning electron microscopy revealed sparse clumps of rhBMP-2 particles, non-uniformly distributed on the rods’ surface of PCL-fibrin composites. In contrast, individual rhBMP-2 particles were evident and uniformly distributed on the rods’ surface of the PCL-TCP-fibrin composites. PCL-fibrin composites loaded with 10 and 20 μg/ml rhBMP-2 demonstrated a triphasic release profile as quantified by an enzyme-linked immunosorbent assay (ELISA). This consisted of burst releases at 2 h, and days 7 and 16. A biphasic release profile was observed for PCL-TCP-fibrin composites loaded with 10 μg/ml rhBMP-2, consisting of burst releases at 2 h and day 14. PCL-TCP-fibrin composites loaded with 20 μg/ml rhBMP-2 showed a tri-phasic release profile, consisting of burst releases at 2 h, and days 10 and 21. We conclude that the addition of TCP caused a delay in rhBMP-2 release. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline phosphatase assay verified the stability and bioactivity of eluted rhBMP-2 at all time points

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alginate microspheres are considered a promising material as a drug carrier in bone repair due to excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and non-controllable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), non-mesoporous bioglass (BG) or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyse the composition, structure and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pHs. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/Alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design-Build (DB) project delivery systems have increasingly been adopted by many private and public sector organizations worldwide due to its many advantages. However, many Indonesian road infrastructure projects are still delivered using the traditional design-bid-build (DBB) project delivery system. This paper reviews the existing literature to explore factors that can influence the successful implementation of DB project delivery system in Indonesian road infrastructure projects. It founds the lack of clarification in existing legislations as well as the lack of experiences, knowledge and skill as the main obstacles in implementing DB systems in Indonesia. To overcome these obstacles, this paper proposes (1) A relook at existing legislation in term of providing more guidance on determining projects appropriate for the DB, procedures for implementing DB, and the structure of builder entity; (2) To develop the skills and knowledge of DB to all stakeholders through communications, knowledge sharing and training. The outcome of this review can serve as a guide to development a framework for the implementation of the design-build project delivery system in Indonesian road infrastructure projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design-build (DB) project delivery systems have increasingly been adopted by many private and public sector organizations worldwide due to the many advantages offered on projects by such systems. However, many Indonesian road infrastructure projects are still delivered using the traditional design-bid-build (DBB) project delivery system. In order to provide evidence of the benefits of DB, it is essential to identify the factors that can contribute to successful DB implementation and this paper aims to provide evidence of such factors that can promote the successful implementation of DB project delivery systems on Indonesian road infrastructure projects. Four main factors and 28 indicators were identified from an extensive literature review, and a Delphi questionnaire survey was conducted amongst 20 experts drawn from the Indonesian road infrastructure construction sector. The first round Delphi study found that regulation, competency of clients, ability to manage DB projects and external conditions were the major factors that can promote successful DB implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.